THE RESOLVING POWER OF LISA:

comparing techniques for binary analysis

SHANE L. LARSON & LEE SAMUEL FINN Center for Gravitational Wave Physics, Penn State

6th International LISA Symposium — GSFC 22 June 2006

THE STORYLINE

- Metrics for binary analysis techniques
- "Resolving power"
- gCLEAN & MaxEnt

What to tell your mom you learned at LISA 6

- Comparing different techniques is hard! (cf. Larson & Hellings talks; Globular Clusters and Gravitational Waves at Penn State, Oct 2003).
 - ▶ Making techniques talk to each other
 - \triangleright Making answers which can be compared
 - \triangleright Deciding what to compare
- There is no obvious or definitive metric of comparison between analysis techniques (see also WG 1b)
- Good metrics are motivated by the science of interest, not what different techniques are good at. When do different techniques get similar answers? When do different techniques get different answers?
- Metrics do not have to involve getting *right* answers, since this is a slippery concept (cf. Neil Cornish's talk, this Symposium)

Techniques for finding binaries

- Many techniques for searching for binaries have been developed
 - ▶ gCLEAN, gCLEAN2 (Cornish & Larson)
 - ▶ Maximum likelihood (Tinto & Krolak)

 - ▶ Markov Chain Monte Carlo (Umstatter et al.; Wickham et al.; Cornish et al.)
 - ▷ Genetic Algorithms (Crowder & Cornish)
 - ▷ Slice & Dice (Rubbo et al.)
 - ▶ MaxEnt (Finn)
- Most in the literature, and initial studies have been performed
- What can be done to directly *compare techniques*?

Defining a 'metric' of comparison

- No single technique will be the hammer for every data analysis nail.
- Ask the *same questions* of different techniques for the purpose of assessing their relative strengths
 - ▶ When should I choose to work with one technique over another?
 - ▶ When should I work with both techniques to check each other?
 - ▶ When should I work with both techniques to support each other?

Ideal conditions for a study

- Common data sets
 - ▶ Same sources, same noise, same LISA configuration
 - ▶ Common data sets are becoming available (cf. TLA, WG1b Challenge data)
- Not all techniques are ready to work with common data
 - ▶ Homegrown input formats (largely mitigated by provided software)
 - ▶ Single data channels or specific TDI channels
 - ▶ Built in models of LISA response and LISA ephemeris
- Barring identical data streams, settle for "identical sources" with similar SNRs, similar LISA configurations.

What do we mean: "resolving power"?

- SCIENCE: We are ultimately interested in confusion, and the emergence of confusion, so a metric to consider is "resolving power"
- Most familiar notion about describing telescopic "resolving power" is probably the *Rayleigh criterion*:

• Resolving means "when can I tell the difference between having one source and two?"

Larson, Benacquista & Taylor (in prep)

Larson, Benacquista & Taylor (in prep)

Initial Study Space

- Data sets have only 2 binaries; most of the parameters are identical
- Fix all the binary parameters, and vary the sky position. At each step, consider how many sources does the technique find with $SNR \gtrsim 5$?
- Default fixed values:

$$\theta = +20^{\circ}, \phi = 25^{\circ}, \iota = 70.98^{\circ}, \psi = 140.95^{\circ}, \phi_o = 120.68^{\circ}$$

Study	Fixed Params	Varied Params
1: Latitude Spread	$f, heta_1, \phi, \psi, \iota, \phi_o, \mathcal{A}$	$ heta_2$
2: Longitude Spread	$f, \theta, \phi_1, \psi, \iota, \phi_o, \mathcal{A}$	ϕ_2
3: Frequency Spread	$f_1, heta,\phi,\psi,\iota,\phi_o,\mathcal{A}$	f_2

What do we mean: "comparison is hard"?

Two resolution examples...

SUMMARY

- Devising methods of comparison between different techniques
- What can we do with each technique, and how do their capabilities complement each other to return the best science from LISA.
- No technique will be the only technique to use. Every technique will have its strengths and weaknesses, which we should exploit.

"We're groping among answers for the question."

- Sam Finn